How about ANY FINITE SEQUENCE AT ALL?

  • lily33@lemm.ee
    link
    fedilink
    arrow-up
    154
    ·
    edit-2
    28 days ago

    It’s almost sure to be the case, but nobody has managed to prove it yet.

    Simply being infinite and non-repeating doesn’t guarantee that all finite sequences will appear. For example, you could have an infinite non-repeating number that doesn’t have any 9s in it. But, as far as numbers go, exceptions like that are very rare, and in almost all (infinite, non-repeating) numbers you’ll have all finite sequences appearing.

      • ProfessorScience@lemmy.world
        link
        fedilink
        English
        arrow-up
        15
        arrow-down
        1
        ·
        27 days ago

        Rare in this context is a question of density. There are infinitely many integers within the real numbers, for example, but there are far more non-integers than integers. So integers are more rare within the real.

      • Sas [she/her]@beehaw.org
        link
        fedilink
        arrow-up
        1
        ·
        26 days ago

        Yes, compared to the infinitely more non exceptions. For each infinite number that doesn’t contain the digit 9 you have an infinite amount of numbers that can be mapped to that by removing all the 9s. For example 3.99345 and 3.34999995 both map to 3.345. In the other direction it doesn’t work that way.

      • cynar@lemmy.world
        link
        fedilink
        English
        arrow-up
        9
        ·
        27 days ago

        There are lot that fit that pattern. However, most/all naturally used irrational numbers seem to be normal. Maths has, however had enough things that seemed ‘obvious’ which turned out to be false later. Just because it’s obvious doesn’t mean it’s mathematically true.