I’m gonna go out on a limb and say that until this is peer-reviewed and replicated, this is worthless.
I’ll also gladly eat my shorts if it turns out they actually did it but ATM I’m very skeptical.
I do hope they are right I would love see you eat your shorts.
Just a word of caution: Non-peer reviewed, non-replicated, rushed-looking preprint, on a topic with a long history of controversy and retractions. So don’t get too excited yet.
What’s the purpose of posting these results before they have been peer reviewed and reproduced?
Because this is how they get peer reviewed and reproduced? Publishing is how science works?
Publishing this outside of a reputable journal is definitely not how papers get peer reviewed. In fact, its a huge red flag.
This is a preprint published on arXiv.org, which is as reputable as it gets before peer review (so no red flag but standard practice). But I agree that people shouldn’t place hopes in this before it’s been peer reviewed and replicated by independent researchers.
My comment was directed specifically at the parent’s comment about publishing (in general not in a reputable peer reviewed journal which arxiv isnt) being how peer review happens. Arxiv is a preprint server. There is no peer review and while many of the papers there have survived the peer review process, a paper being on that server doesnt really say anything about the quality of that paper. It could be a great paper, it could be garbage or somewhere in between the two extremes. In any case, the hype around this paper is concerning because it has not, as of yet, survived the scrutiny that is demanded by the claims it is making.
This is huge, is it not? No loss in potential energy means that I could have an infinitely floating coffee cup without the use of power, no?
If it were real maybe. But having read the paper, I am very skeptical that it is.
Reposting my comment from another thread to add a bit of context in case anyone’s curious.
So I read the paper, and here’s a tldr about how their material apparently gains its properties.
It is hypothesized that superconductivity properties emerge from very specific strains induced in the material. Hence why most of the discovered superconductors require either to be cooled down to very low temperatures, or to be under high pressures. Both shrink the material.
What this paper claims is that they have achieved a similar effect chemically by replacing some lead ions with copper ions, which are a bit smaller (87 pm for Cu vs 133 pm for Pb). This shrinks the material by 0.48%, and that added strain induces superconductivity. This is why it apparently works at room temperature — you no longer need high pressures or extreme cold to create the needed deformation.
Can’t really comment on how actually feasible or long-lasting this effect is, but it looks surprisingly promising. At least as a starting point for future experiments. Can’t wait for other labs’ reproduction attempts. If it turns out to be true, this is an extremely important and world-changing discovery.
deleted by creator
Well for one, we’re running out of helium and fast. Helium is used to super cool existing superconductors, like those used in MRI machines.
And then there’s the power transmission benefits. Right now we’re wasting upwards of 5% of the electricity we generate.
What do you mean by wasting if it’s referring to transmission losses that’s closer to 3-6% not 50%
Ah hell I meant to type 5% and actually typed 50. I got that number here: https://www.eia.gov/tools/faqs/faq.php?id=105&t=3
Ok fair enough
Room temperatur 127?? You fucking kidding me?
I can count on my hands the amount of times I’ve seen revolutionary room conditions superconductor papers, which may not be too many, but enough to quickly dismiss this especially because it looks really barebones
I would be very skeptical of this paper’s claims.
-
It hasnt been peer reviewed
-
The data hasn’t been replicated
-
The clains being made are extraordinary. i.e a cheap material that has a superconduction transition temperature 200 degrees kelvin above the cuprates at standard pressure
-
The fragility of this superconductive state makes me wonder if what theyre claiming to observe is an artifact (pathological science) rather than a real effect
-
The paper is “rough around the edges” i.e multiple proofreading mistakes and has undergone little apparent editing for quality
There’s no room for pathological science
https://sciencecast.org/casts/suc384jly50n
The only way to do something like that with diamagnetism or ferromagnetism is to deliberately fake the arrangement of magnets.
There is always room for pathological science. Especially when something like room temperature superconductors are the subject in question. A good researcher will try to find and test all the alternative hypotheses that they can. i.e contrast the cisplatin paper with fleischmann and pons’ paper about cold fusion. This paper reminds me a lot more of the cold fusion paper than it does the cisplatin paper. Another example of a bad paper would be NASA’s announcement of a microbe that used an Arsenic containing analog of DNA.
-