I think the distinction is we don’t use general purpose 240v receptacles. We only use them as dedicated circuits for built in major appliances. Historically that was sufficient.
We also don’t really use 20a outlets. I don’t know why, especially now that we require 20a circuits in a few places, but you rarely see 20a outlets or appliances with 20a plugs, even though a lot of small appliances could benefit from a little extra power
So is there really a need? Electric kettles are a perfect scenario but what else? Most other use cases for 240v are “built in” appliances not likely to move (welder, air conditioner, laundry, range, etc). Space heaters and hot plates are already dangerous enough that allowing double the current seems like a hazard
Space heaters and hot plates are already dangerous enough that allowing double the current seems like a hazard
You’d require half the current for the same wattage at 240v. At most, it’s the same 15a max, with double the voltage.
Tbh I think I’d rather achieve the same heat output by running them at 240v using less current instead of 110v and pulling as much current as possible/permitted (15a).
Insulation is cheaper than actual conductors too. Higher voltage and lower current means thinner conductors with more insulation to protect them. You’d also remove complexity and thus cost by only needing one voltage. No need for a split phase supply.
I think the distinction is we don’t use general purpose 240v receptacles. We only use them as dedicated circuits for built in major appliances. Historically that was sufficient.
We also don’t really use 20a outlets. I don’t know why, especially now that we require 20a circuits in a few places, but you rarely see 20a outlets or appliances with 20a plugs, even though a lot of small appliances could benefit from a little extra power
So is there really a need? Electric kettles are a perfect scenario but what else? Most other use cases for 240v are “built in” appliances not likely to move (welder, air conditioner, laundry, range, etc). Space heaters and hot plates are already dangerous enough that allowing double the current seems like a hazard
You’d require half the current for the same wattage at 240v. At most, it’s the same 15a max, with double the voltage.
Tbh I think I’d rather achieve the same heat output by running them at 240v using less current instead of 110v and pulling as much current as possible/permitted (15a).
Insulation is cheaper than actual conductors too. Higher voltage and lower current means thinner conductors with more insulation to protect them. You’d also remove complexity and thus cost by only needing one voltage. No need for a split phase supply.
I think 240v would be a better option. 🇨🇦