Programming models like the Actor model and the Tuplespace model make great strides toward simplifying programs that communicate. However, a few key difficulties remain.

The Syndicated Actor model addresses these difficulties. It is closely related to both Actors and Tuplespaces, but builds on a different underlying primitive: eventually-consistent replication of state among actors. Its design also draws on widely deployed but informal ideas like publish/subscribe messaging.

For reference, actors and tuple-spaces are means to implement concurrent programs. Actors are essentially tiny programs/processes that send (push) messages to each other, while a tuple-space is a shared repository of data (“tuples”) that can be accessed (pulled) by different processes (e.g. actors).

A handful of Domain-Specific Language (DSL) constructs, together dubbed Syndicate, expose the primitives of the Syndicated Actor model, the features of dataspaces, and the concepts of conversational concurrency to the programmer in an ergonomic way.

To give some of the flavour of working with Syndicate DSL constructs, here’s a program written in JavaScript extended with Syndicate constructs:

function chat(initialNickname, sharedDataspace, stdin) {
  spawn 'chat-client' {
    field nickName = initialNickname;

    at sharedDataspace assert Present(this.nickname);
    during sharedDataspace asserted Present($who) {
      on start console.log(`${who} arrived`);
      on stop  console.log(`${who} left`);
      on sharedDataspace message Says(who, $what) {
        console.log(`${who}: ${what}`);
      }
    }

    on stdin message Line($text) {
      if (text.startsWith('/nick ')) {
        this.nickname = text.slice(6);
      } else {
        send sharedDataspace message Says(this.nickname, text);
      }
    }
  }
}

Documentation

Comparison with other programming models

History

Author’s thesis